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S U M M A R Y  
The problem of an impulsively applied pressure acting on the surface of a spherical cavity imbedded in an elasto-plastic 
medium governed by a bilinear stress-strain law is considered. The problem is solved by using a certain iterative finite 
difference scheme which prevents almost all the numerical oscillations which usually occur in the region behind the 
discontinuity at the elastic-plastic boundary, when a standard finite difference scheme is applied. 

1. Introduction 

The problem oi" spherical wave propagation produced by the application of a pressure to the 
surface of a cavity in elasto-plastic material has been investigated by several authors. Hopkins 
[1] gave a general review of the subject covering works published up to 1960. Friedman, Bleich 
and Parnes [2] determined the response of an elastic-perfectly incompressible plastic medium to 
an exponentially decaying pressure applied at the spherical cavity. This particular loading 
allowed a combined analytical and numerical approach employing a special finite difference 
scheme. Garg in [3] and [4] treated a similar medium using finite difference solution and series 
approximation for the starting of the solution. Davids, Mehta and Jhonson [5] used a direct 
numerical method for an elastic-incompressible plastic medium. 

Mok [-6] obtained the solution for perfectly plastic material using a finite difference solution 
with a scheme proposed by Lax [7] which adds to the original equation a linear viscosity term. 
As a result the discontinuity between the elastic and the plastic zones is smeared. This is also 
indicated by Chadwick and Morland [8]. Recently Yang [9] studied the propagation of waves 
in elastic-incompressible plastic material using the method of characteristics. In the present 
paper the problem of an impulsive non-decreasing pressure acting on the internal surface of a 
spherical cavity in an elasto-plastic medium is considered. The medium is assumed to behave 
according to a bilinear theory in which strain hardening and plastic compressibility can be 
taken into account. The constitutive equations for this theory are given by Aggarwal et al. [10]. 
According to these equations, the motion associated with the plastic region is coupled to that 
in the elastic region through the yield stresses, and this coupling reflects the intrinsic nonlinear 
character of the medium. The method of the solution in the plastic region is based upon a finite 
difference scheme in which an iterative procedure is used in order to remove oscillations which 
are typical for numerical calculations behind strong gradients such as shock waves. In our case 
these gradients occur between the elastic and plastic zones 

The present solution proves to be quite simple to apply, convenient, very effective and does 
not suffer from serious smearing of discontinuities. Results are given for the radial stress for 
different amounts of hardening, yielding and the applied pulse duration. The variation of 
position of the elastic-plastic boundary with time for several amounts of yielding and pulse 
duration is shown. 

2. Statement of the Problem 

Let us consider a spherical cavity of radius a in an infinite elasto-plastic medium. The material is 
considered to be isotropic, elasto-plastic with linear work hardening. The deformations are 
assumed to be small. The surface of the cavity is subjected to a time-dependent pressuref( t)  
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commenc ing  at t ime t = 0. We confine ourselves in this pape r  to the case of  a cont inued loading, 
so tha t f ( t )  > 0 for all t > 0. We  assume that  the p ressure f ( t )  is such that  the mater ia l  adjacent  to 
the cavi ty  surface is at first deformed elastically and at a later t ime plastically. 

The  infinite region r > a at some t ime t > 0 is divided into the following three zones : 
(1) A zone of loading a < r < a + Cp t bounded  by the cavity surface r = a and terminat ing at the 

plastic wave front r = a + cp t which moves  at  the velocity of  the plastic waves c v given in the 
sequal. 

(2) An  elastic zone bounded  by r + cpt < r < a + at  which precedes the loading zone and termi- 
nates  at  the elastic wave front p ropaga t ing  at the elastic wave velocity a given in the sequal. 
At  the b o u n d a r y  between the loading and  elastic zones, discontinuit ies take place. 

(3) The  zone of the med ium at res t '  r > a + at. 
Our  purpose  is to find the mot ion  of the m e d i u m  at t > 0 as a result of lhe appl ied pressure on 
the surface of the cavity. 

3. The Equations in the Elastic Zone 

The const i tut ive equat ions at  the elastic zone are given as usual by : 

tTij = )]'1 ekk (~ij ~- 2 t q  ei~ (1) 

where aij, eij are the stress and strain tensors, 81j is the K r o n e c k e r  delta, 21 and/~1 are the Lam6's  
cons tants  and p is the density. 

Accord ing  to the stress equat ions : 

82ui 
p ~ = aij,j  (2) 

the e las todynamic  equat ions of  mo t ion  for the displacement  vector  u are : 

82u 
(21 + 2/~1) grad div u - ~ t l  rot  rot  u = p &2 (3) 

The  longitudinal  and shear wave velocities are given by 

3 K l ( 3 K l +  E1)]  �89 
a = [(21+2Ftl) /p]  ~ = p ~ l  Z . ~ I ) - j  

(4) 
�9 [ 

fi = (#a/P)~ = L p ( 9 K , - E 1 ) J  

where E1 and K1 are the elastic and bulk modul i  respectively. 
In the present  case of  spherical symmetry ,  (3) reduces to 

1 8 2 8 2 2 8 2 
a2 812 ur = ~r~ u, + - r ~  u r -  7 u~ (5) 

where u = (u~, 0, 0) in spherical  coordinates  (r, 0, ~b) with the origin at the center  of  the cavity. 
Before yielding takes place, equat ion (5) mus t  be solved with the bounda ry  condi t ion : 

a** = - f ( t )  at  r = a .  (6) 

4. The Equations in the Loading Zone 

The plastici ty equat ions of  state, according to the bi l inear theory  [10] are given by : 
-(2) (2) (2) 
ij = ~2~kk t~ij"~ 2#28ij 

and 
8u12~ 8u~2) 

(7) 

(8) 
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where the super index (2) denotes quantities added in the plastic region, and 22,#2 are the 
Lam6's constants for this region. 

Then : 
_Co). _~2) (9) (Tij ~ u i j  -r- t~ i j  

~ij = ~(0) ~(2) ~ +< j  (10) 

where ~o) elm denote the stress and strain tensors at the yield point which it is fixed according uij  
to the yield condition. 

The elasto-plastic equations of motion according to the stress equation (2) and (7), (8) are 
given by : 

F {~ (22 + 2]22) grad div u ~2) --/~2 rot rot 1/(2) -~- F ~~ = p - -  

where : 
F(O) = =(o) i t~i j , j  

The plastic wave velocities similarly to (4) are given by 

~2 U(2) 

Ot 2 (11) 

(12) 

3 K 2 ( 3 K e + E 2 )  
Cp = [ (~2 ~- 2#2)/P] ~ = P (9K2  _ E2  ) 

3 K 2 E  2 
c s = [l~2/p] ~ -  p ( 9 K 2 _ E 2  ) 

(13) 

E 2 and K2 are the constant rate of work-hardening and the bulk modulus in the plastic region 
respectively. In Fig. 1 the bilinear stress-strain curve in simple tension and the pressure- 
dilatation curve are shown. For the special case of plastic incompressibility K 2 = K  1. In a 
perfectly plastic medium E 2 = 0. 

~o _ 1 o . - ' E 2  < 
lab_ I El ,~o) 

~ / - i  ;SKz 

tan -~ 5K I ,[I ~ 
Figure 1. Bilinear stress-strain curve and pressure-dilatation curve. 

Equations (11) show that the motion in the plastic region is coupled to that in the elastic 
region through the stresses at the yield point. This coupling reflects the intrinsic nonlinear 
character of the medium. 

In the present case of spherical symmetry (11) reduces to 

1 C 2 0 2 u~2) 2 ~ .(2) 2 (2) (0) _~2 
Cp2 C~t2 U~2) = - -Or  2 + -r Cr ur - ~ ur +Fr /p~p (14) 

Equation (14) must be solved with the boundary condition : 

a~r = - f ( t )  at r - - -a .  (15) 

Then according to (9) 

cr o~~ at r = a (16) 
r r  = - -  I f ( t ) +  . . , j  
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5. The Time-Dependent Pressure 

We consider the case of an impulsive pressuref(t) applied on the internal surface of the cavity. 
The functionf(t) is chosen as: 

f ( t )  -= A ( 1 - e  A.,)H(t) (17) 

where H(t) is the Heaviside step function, 1/A is a time constant which determines the pulse 
duration and A is an amplitude factor having the dimension of stress, which corresponds to the 
maximum value that the pressure attains at t ~  oo. The function f(t) given by (17) provides a 
gradually increasing pressure as a function of the time t. For A ~ oo,f(t) tends to H (t). Various 
values of A provide the dependence of the elasto-plastic wave propagation upon the pulse 
duration. 

6. The Yield Criterion 

The yield criterion appropriate to linear work-hardening according to Hill [11] and Hopkins 
[1] is given by: 

a ~ 1 7 6  F(r' t' Y) ) }  

(_  ~u~ ( is)  
F(r, t, Y) = Y + E  2 ~ + aoo/3K 1 -  Y / E  1 

where Y is the yield stress in uni-axial tension, a~, aoo, (?u~/t?r are calculated by solving the 
elastic equation (5) with the boundary condition (6). For any time t > 0 and radial distance 
r > a, the stress difference a00-a~ is calculated by solving (5~(6) to find whether the material 
has yielded. This is indicated by the yield function F(r, t, Y) becoming equal to or greater than 
zero. Before the material has yielded, F (r, t, I7) is negative. For a perfectly plastic material E 2 = 0 
and the yield criterion (18) reduces to the simple form: 

{700-- Grr : y .  

7. The Solution of the Elastic Equation 

The solution of(5)-(6) is given by a convolution of the function 9(t) = (d/dt)f(t) with the solution 
Ur(r, t) of (5) with the boundary condition: 

arr= - A H ( t )  (19) 

as given by Jeffreys [12] for c~=x/3 ft. Thus: 

The result is : 

a ~ A e -  ~ { [ (e~, _ e ~ _  a,/,)/A + 4 2 ( ~ -  a/Z) Ca (r, t)/a u~(r, t) = A 4#1r 2 

- C l (r, 0 ] u ( t -  (r - a)/~) 

Cl(r, t )= C{&" [,]2 sin X/2tl-{- b cos ~ 2 / 1 ] - b  } 

c2  (r, t) = c { e b', [b sin ,D-t,  - , / ~  cos ~ t d  + , / ~ }  

C = -2~3a e(r_a)A/,/ (b2 + 2) , tx = 2(at--r  + a)/ 3a, b = (3aA - 2 a ) / 2 a .  (21) 
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8. Finite Difference Solution of  the Equations in the Loading Zone  

In the following we give a finite difference solution to (14) with the boundary condition (16). 
The term F~ ~ in (14) is calculated according to (12) and the elastic solution (21) at the yielding 
point by employing (18). 

By replacing derivatives in (14) by central differences, the displacement at time t + A t  is 
obtained in terms of its values at t and t - A t "  

uT'(r, t + A t) = k 2 [42' (r + A r, t) + 4 2 ' ( r -  A r, t)] + k ~ AA [u?)(r + A r, t ) -  uT) ( r -  A r, t)] 
r 

- 2 [  k 2 + k  2 (~)2--11 u~2)(r,t)-~(v2l(r,t-Mt)+(At)2F(~ (22) 

where: k = cpAt/Ar.  (23) 

The finite difference scheme (22) is applied at r > a and therefore a fictitious point is needed at 
r = a - A r ,  the values at which are calculated using the boundary condition (16) as follows: 

u~2) (a Ar, t) = [1 +2 (1 -2c2 /c  2) Ar/a] u~Z)(a, t)+ Ar [ / ( t ) +  a (~ ^~2 , - r~ I / v % .  (24) 

In order to find the appropriate stability condition for the three-time levels finite difference 
scheme (22), let us represent it in its equivalent two-time levels difference system as is shown in 
Richtmyer and Morton [13, p. 168-170]. This equivalent scheme can be written in the form : 

w(r, t+ At) = [Q (At)+ At'Q1 (At)] w(r, t) (25) 

where : 

w(r,t) = (u~Z)(r't)~ u~2)(r,t-At)=_x(r,t) 
\ t ) / '  

Q (At) is the difference operator due to the second order derivative in r in (14) (the principle part), 
and QI(At) represents the remaining terms. 

According to Kreiss perturbation theorem [13,p.58], the difference system (25) is stable if 
the system : 

w (r, t + A t) = Q (A t) w (r, t) (26) 

is stable, provided that Q1 (At) is bounded. 
Thus the stability condition for (22) can be founded by treating the principle part in (14) i.e.' 

1 02 0 2 
2 ~[2 u~2)  - -  U~2)" (27) 

Cp ~r 2 

This is known [13,p.260-263] to be stable according to yon Neumann, with the condition: 

cpAt/Ar ~ 1. (28) 

The finite difference scheme (22-24) is applied with E 2 = 0.5 E 1, K 2  = 0.6 K 1, Y / A  = 0.2, aA/~ = 1 
and with a grid ofAr = a/100, At = a/200~. The results for Gr as a function of the radial distance r 
are shown on the top of Fig. 2 at various times t. Nerve oscillations exist which begin near the 
shock front of the plastic wave. These oscillations are typical for numerical calculations behind 
strong gradients such as shock waves. 

Mok [6] used a finite difference scheme proposed by Lax [7] which adds to the original 
equation a linear artificial viscosity term, and as a result the discontinuities between the 
loading and elastic zones are smeared and indistinct, which is an obvious disadvantage of the 
scheme. 

Recently Abarbanel and Zwas [14] applied an iterative finite difference scheme to the 
problem of one dimensional time-dependent flow of a compressible gas in order to handle 
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discontinuities such as shock waves. They obtained monotonic profiles for almost all the cases 
they tested. Let us modify and apply their iterative method to our second order finite difference 
equation (22) in the following way : 

Let v (r, t) =- uf 2}(r, t) and 

L[v(r, t)] =kZ{v(r+Ar,  t )+v(r -Ar ,  t)} + k 2 Ar {v(r+Ar, t ) - v ( r - A r ,  t )}+ 
r 

Then (22) can be written in the form: 

v(r, t + At) = 2v(r, t ) -  v(r, t-- At) + L [v(r,t) ] (30) 

Let us consider now instead of (30) the following iterative scheme in which the n th iteration 
v" is obtained by : 

v"(r, t + At)= 2v(r, t ) -v ( r ,  t - A t )  

+ { w 3 L [ v n - t ( r ,  t + A t ) ] + w z L [ 1 ) ( r  , t ) ] + W l L [ V ( r  , t - A t ) ] } / ( W l + W 2 + W 3 )  (31) 

where n is the order of the iteration, n=  1, 2, ..., N;  w~ are weight factors, and v~ t+At) is 
defined by : 

v~ (r, t + At) = v(r, t + At) (32) 

where v (r, t + A t) is given by (30). 
Actually (30-31) can be regarded as predictor-corrector, where (31) serves as the correc~or 

and is applied several times each of which uses the results of the former steps. We choose weight 
factors wi in (31) as;w~ = -  1, Wz=W3 = 1 which lead to the best results. 

_ E 2 " O S j , .  _K~=0.6~I" Y / A = O ~  ZXa/a=I.Q 

0 .2  = t / o=0 .5  _ 0.2 a t / a = 1 5  . . . .  

b-O 2 alia =I.0 =02 a t l ~  "2.0 

l!O I!5 ,lo ,1.5 31.0 ,I.5 1.0 l!O 1'5 21.0 2!5 3!0 r �9 3.5 --rio - - r l a  

.0 ,2  / /  a t / a ' I  0 ~ ~ 

%. (o,, 

4!o 

Figure 2. Radial stress variation with distance at various times, computed by the difference scheme (22) and (24) (top). 
Radial stress variation with distance, computed by the iterative scheme (31) and (24) (bottom). 

The bot tom of Fig. 2 shows the results with N = 1, i.e., one iteration only. It is seen that the 
one iteration is highly effective in removing the oscillations, and does not have the disadvantage 
of serious smearing of discontinuities. Applying two iterations (N = 2) gives results which are 
good as the results from the one iteration only, and up to the scale of the plot they are indis- 
tinguishable. In the sequel all the results are given with N = 1. 

Let us carry out the stability analysis of the iteration procedure with N = 1. F rom (31) we get : 

v 1 (r, t+At )=  [2+(O2+203)L+O3L 2] v(r, t)+ [(01 - 03)L-  1]/)(r, t - A t )  (33) 

where: O,=wi/(w 1 +w 2 +w3), (i= 1,2,3). 
We take again the principle part of (14). According to von Neumann let : 

1) (r, [) = V 0 eim ~ A r ~j (34) 

where r =  mA r, t=jAt.  Then (33) reduces to" 
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 2-2A1 +31=0 (35) 
where : 

A1 = 1 - 2 (203 + 02)y -F 803y 2 (36) 

B 1 = 1 - 4 ( 0 3 -  01)y (37) 

Y = k2 sin2 r/Ar 2 ' k = cpAt/Ar (38) 

For  stability, 141 < 1 and therefore IA1] < 1 and IBll -< 1. 
This  implies that : 

03>01, 03>0,  (cpAt/Ar)Z<=0.5/(03-01), (cpAt/Ar)2<(203+O2)/401. (39) 

As  stated above,  the best results are obtained with wl  = - 1, w2 = w3 = 1, which  clearly satisfy 
these condi t ions  for stability if: 

cp A t /Ar<  1 . (40) 

9. Discussion 

at/a=O 5 0.2 

0 B ~  
- I 0  

L / 1.15 210 

In Figs. 3-7  s o m e  results for the radial stress at different t imes are given for var ious  values  of  the 
plastic parameters  E2,  g 2. The effects of  var ious  values  of  yielding Y and t ime constants  1/A 
are given, and the corresponding elastic-plastic boundaries  are shown.  In these figures the 
parameters  are chosen  such that : w 1 = - 1, w2 = w3 = 1, A t =  a/100, A t =  Ar/2~ = a/200cc This  
choice  for At satisfies condi t ion  (40) because  cp < ~. 

Figs. 2-5  and Fig. (7) show the radial stress as a funct ion of  the distance r. They  show the 
plastic region fo l lowed by the elastic region at a greater radial distance,  with the discont inuity  
at the elastic-plastic boundary.  The elastic region ends at the elastic wave  front. 

Y/A=OZ ~a/a=l.O K e ~ j  
0 6 I ~  

02 ~l/a.10 

-o.2 

- o.6E~ - 

-Io 
' ~5 ' ,!o ,s 2'~ ~'o 3[5 ' 2,5 31.0 4.0 215 4.O 

- - r /o  
0.2 at/==l.5 O.Z - - r /a  

b~ EI 'O - -  

EI.O,~E = . . . . .  
_, o f " -  

Figure 3. Radial stress variation with distance at various times, in the case of plastic incompressibility and different 
amounts of hardening. 

Y/A=O 2 ~a/~-l,O ~= = El/2 

02 =l/a .o.5 02 a t / a . L o  

i!il r:o, - 
i!o l!5 z!o 215 /0  3!5 4!0 15 l!5 .2'0 215 / 0  /.5 / 0  

~r/o - - r /a  
021 at/a=l.5 0.2 at/0" 2 t o O  

~-0,6 ...... 
. . . .  K2.09K I . . . . .  

-I 0 K, 

Figure 4 Radial stress variation with distance at various times, in the case of fixed hardening and different values of 
plastic bulk modulus. 
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t -o.6 ~-o.s 

,.'o ?, ~'o ~'~ ~'.o ~'.~ ,.o' ,!o ~!~ ~'o ~'o ~.o 'o 2.0 
- - r i o  - - r  a 

0.2~ at/a,l.~ 0.2 tztfa -2.Q / 

~-o.~ ~-o~ .s . . . . .  
- - "  Y/A .O .S  . . . .  

-I o ~- ' - ' "  y /A . {  

Figure 5. Radial stress variation with distance at various times, in the case of fixed time duration of the appIied pulse 
and different amounts of yielding. 

~ = 0 . 5  El- ; < = ~ l -  
~ale-l Y/A,O.Z 

2.5 - Y/A=O 5 2.5 ~a /a=  1/2 
Y/A= 0.8 Y/A=O 2 ~ ,o /a-  I ~.a/a = 2 ~ i:I  ? 

h o I,o 

0 5  ~ 015 ~ L I . . . .  �9 

0 0 ~ ~  0 0 3.0 I0 15 2 0  2 5 3 . 0  l ~ l 0 I 15 2 0 ~ 5 

~ r / a  - - r i o  

[a) (b) 

Figure 6. The propagation of the elasto-pIastic bounda ry  : (a) for different amounts of yielding ; (b) for different values of 
pulse duration. 

i~06 HO.6 

-I0 l ~0 
ilo ii5 210 215 310 3~5 40 I!O 115 2!0 21.5 31.0 25 41.0 

r/o - - r i o  
02 q'!~=~ '~- -~" 0.2y . . . . . . . .  

'-i ,o : : ; : : ' : o  ..... 

Fig. 7. Radial stress variation with distance at various times, in the case of fixed amount of yielding and different values 
of pulse duration. 

Let us examine the effect of the change in E2 and K2 on the elasto-plastic wave propagation : 
(a) In Fig. 3 the radial dependence of at, is given at various times for the case of plastic in- 
compressibility K 2 = K1 and various amounts of hardening: E2/E 1 = 0, 0.1, 0.5, 0.9. The solid 
line corresponds to a perfectly plastic medium. The results show that the effect of the hardening 
on at, is not significant. See also Yang [9] who reaches the same conclusion. 
(b) In Fig. 4 the radial stress is similarly examined for the case of fixed hardening E2=EI/2 
and different values of plastic bulk moduli: K2/K 1 = 1, 0.9, 0.6, 0.5. Here again results show 
only slight changes of the radial stress a~r with K 2. 

In Fig. 5 the radial stress is given for fixed time duration of the pulse and various amounts of 
yielding Y/A = 0.2, 0.5, 0.8. As could be expected the radial distance between the elastic front 
and the elasto-plastic boundary is shortened for lower amounts of yielding. In Fig. 6 the location 
of the elasto-plastic boundary at the various times, i.e. its propagation diagram, is given for 
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several values of yielding stresses Y and time constants 1/A. One can see clearly the effect of 
the applied pulse duration on the location of the boundary, showing that yielding in the material 
is dependent on the pulse duration as well as the applied pressure intensity. See also Hopkins 
[1]. This is also clearly seen in Fig. 7 where the radial stress is given for fixed amount of yielding 
Y/A = 0.2 and different values of pulse duration aA/~ = 0.5,1,2. 
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